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A two-component system is considered, which is subject to external and possi-

bly fatal shocks. The lifetimes of both components are characterized by their

hazard rates. Each shock can cause the immediate failure of one single or of
both components. Otherwise, the hazard rate of each component is increased

by a non fatal shock of a random amount, with possible dependence between

the simultaneous increments of the two failure rates. An explicit formula for
the joint distribution of the bivariate lifetime of the two components is pro-

vided. Some positive dependence properties of the bivariate lifetime are found

out. The influence of the shock model parameters on the bivariate lifetime is
studied.

Keywords: Bivariate non-homogeneous compound Poisson process, Haz-
ard rate process, Aging properties, Positive dependence properties.

1. Introduction

This paper is devoted to the survival analysis of a system subject to compet-

ing failure modes within an external stressing environment. The external

environment is assumed to stress the system at random and isolated times

according to a random shock model. Such a model can represent external

demands e.g., which put some stress on the system at their arrivals. The

occurrence of shocks is classically modeled through a non-homogeneous

Poisson process and components lifetimes are characterized by their failure
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rates. The shocks are simultaneous for both components and each shock

can be simultaneously fatal to both components, which induces some depen-

dence between the components. Also, a shock increases the failure rates of

the surviving components of a random increment, with possible dependence

between simultaneous increments. Finally, following [1], the probability for

a shock to be fatal depends on the shock’s arrival time, which induces a

last kind of dependence. Based on this setting, the aim of the paper is the

study of the bivariate lifetime of the two components.

The paper is organized as follows: the model is specified in Section 2.

An explicit formula for the joint survival function of the bivariate lifetime

is provided in Section 3, as well as some positive dependence property. The

influence of the model parameters on the bivariate lifetime is also discussed.

Numerical experiments finally illustrate the study in Section 4.

2. The model

Out of the stressing environment, the two components are assumed to be

independent. The lifetime of each component is characterized by its intrin-

sic hazard rate hi(t), i = 1, 2, or by the corresponding cumulative hazard

rate Hi(t) =
∫ t

0
hi(u)du, i = 1, 2. Stresses due to the external environment

arrive by shocks, independently of the system intrinsic deterioration. The

shocks occur at time T1, T2... according to a non-homogeneous Poisson pro-

cess (Nt)t≥0 with intensity λ(t) and cumulative intensity Λ(t) =
∫ t

0
λ(x)dx.

The nth shock at time Tn increases the hazard rates of both components of

a random amount Vn =
(
V

(1)
n , V

(2)
n

)
, where the increments (Vn)n≥1 are in-

dependent and identically distributed (i.i.d.) and independent of the shocks

arrival times (Tn)n≥1. The simultaneous increments V
(1)
n and V

(2)
n at time

Tn may however be dependent. Furthermore, a shock can be fatal, and can

possibly induce the immediate failure of one single or of both components.

The fatality of a shock does not depend on the system intrinsic deteriora-

tion but depends on the shock’s arrival time. The following notations are

used:

• p00 (Tn): probability that the shock at time Tn induces the simul-

taneous failure of both components,

• p11 (Tn): probability that the shock at time Tn induces no failure

at all among the two components,

• p01 (Tn): probability that the shock at time Tn is fatal only for the

first component,
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• p10 (Tn): probability that the shock at time Tn is fatal only for the

second component,

with
∑

0≤i,j≤1 pij (·) = 1.

The common distribution of the i.i.d. random vectors Vn =
(
V

(1)
n , V

(2)
n

)
,

n ∈ N∗ is denoted by µ(dv1, dv2). When subscript n is unnecessary, we

drop it and set V =
(
V (1), V (2)

)
to be a generic copy of Vn =

(
V

(1)
n , V

(2)
n

)
.

For j = 1, 2, the distribution of V (j) is denoted by µj(dvj).

We set (At)t≥0 =
(
A

(1)
t , A

(2)
t

)
t≥0

to be the bivariate compound Poisson

process defined by

A
(i)
t =

Nt∑
n=1

V (i)
n , i = 1, 2, At =

(
Nt∑
n=1

V (1)
n ,

Nt∑
n=1

V (2)
n

)

where
∑0
n=1 ... = 0 and F = σ(As, s ≥ 0) is the σ-field generated by

(At)t≥0.

Providing that it is functioning up to time t, the conditional hazard rate

of the ith (i = 1, 2) component at time t given F = σ(As, s ≥ 0) is

ri(t) = hi(t) +A
(i)
t .

Let τi, i = 1, 2 be the lifetime of the ith component without taking into

account the possibility of fatal shocks and let ξi, i = 1, 2 be the time of the

first fatal shock for the ith component. We have

E(1{τi>t}|F) = e−Hi(t)e−
∫ t
0
A(i)

s ds = e−Hi(t)e−
∑Nt

k=1 V
(i)
k (t−Tk)

= e−Hi(t)e−
∑∞

k=1 V
(i)
k (t−Tk)+ (1)

and

E(1{ξi>t}|F) =

Nt∏
k=1

qi(Tk)

where q1 (·) = p11 (·) + p10 (·) and q2 (·) = p11 (·) + p01 (·).
Given F , the random variables τ1 and τ2 are assumed to be condition-

ally independent one with the other, and conditionally independent of ξ1
and ξ2. However, as the two components may fail simultaneously at each

shock, ξ1 and ξ2 are not conditionally independent given F . Given F , their
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conditional joint survival function is

E(1{ξ1>s}1{ξ2>t}|F) =



Nt∏
i=1

p11(Ti)

Ns∏
i=Nt+1

q1(Ti) if s ≥ t,

Ns∏
i=1

p11(Ti)

Nt∏
i=Ns+1

q2(Ti) if s < t

(2)

where
∏0
k=1 ... = 1.

We set Y = (Y1, Y2) to be the lifetime of the two components. It is easy

to see that Yi = min(τi, ξi) for i = 1, 2.

3. Theoretical results

In all the paper, the results are provided without proof, due to the reduced

size of the paper.

Proposition 3.1. The joint survival function of Y = (Y1, Y2) is given by

FY (s, t)

= e−H1(s)−H2(t)−Λ(max(s,t))exp

(∫ min(s,t)

0

µ̃((s− w)+, (t− w)+)p11(w)λ(w)dw

+1{t≤s}

∫ s

t

µ̃1(s− w)q1(w)λ(w)dw + 1{t>s}

∫ t

s

µ̃2(t− w)q2(w)λ(w)dw

)
(3)

where µ̃ stands for the Laplace transform of the bivariate distribution µ of

V , with

µ̃(x1, x2) =

∫∫
R2

+

e−x1v1−x2v2µ(dv1, dv2) = E
(
e−x1V

(1)−x2V
(2)
)

for all x1, x2 ≥ 0

and µ̃(i) stands for the Laplace transform of the distribution µ(i) of V (i),

with

µ̃i(xi) =

∫ ∞
0

e−xiviµi(dvi) = E
(
e−xiV

(i)
)

for i = 1, 2 and all xi ≥ 0.

We recall that Y2 is said right-tail-increasing in Y1, written RTI(Y2|Y1),

as soon as

P(Y2 > x2|Y1 > x1)

is non decreasing in x1 for all x2 ≥ 0. Also, Y2 is said left-tail-decreasing in

Y1, written LTD(Y2|Y1), as soon as P(Y2 ≤ x2|Y1 ≤ x1) is non increasing
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in x1 for all x2 > 0. Both RTI(Y2|Y1) and LTD(Y2|Y1) properties are pos-

itive dependence properties, which imply association and positive quadrant

dependence of Y , see [5] for more details on these different notions.

Proposition 3.2. Both properties RTI(Y2|Y1) and RTI(Y1|Y2) are true.

However, as will be shown in the next section, it is possible that one

margin is not left-tail-decreasing in another margin, that is LTD(Y2|Y1)

property is no always true.

We now study the influence of different parameters on the bivariate life-

time Y . With that aim, two similar systems are considered, with identical

parameters except one. We add an upper bar to all quantities referring to

the second system. (For instance, we use λ (w) for the second system). The

next result shows that, as expected, the more frequent the shocks are, the

smaller the bivariate lifetime Y is.

Proposition 3.3. Let us consider two systems with the same parameters

except from the intensity of the non-homogeneous Poisson process. Assume

that λ(w) ≤ λ(w) for all w ≥ 0. Then, Y is smaller than Y in the sense of

the Weak Hazard Rate order (Y ≤whr Y ), which means that F̄Y (x)/F̄Y (x)

is increasing in x = (x1, x2) ∈ {y : F̄Y (y) > 0}). As a consequence [4], we

also have Y ≤UO Y (Upper Orthant Order), namely FY (x) ≤ FY (x) for

all x ∈ R2
+ and

mȲ (x) = E(Ȳ − x|Ȳ > x) ≤ mY (x) = E(Y − x|Y > x)

for all x ∈ R2
+, where mȲ and mY are the multivariate mean residual

lifetimes of Ȳ and Y .

The next result shows that the smaller the fatality of shocks is, the

larger the bivariate lifetime Y is.

Proposition 3.4. Let U (w) with distribution P (U (w) = (i, j)) = pi j (w)

for all i, j ∈ {0, 1} and Ū (w) defined in the same way with respect to

the family (p̄i,j (w))i,j∈{0,1}. Let us assume that U (w) ≤UO Ū (w) for all

w ≥ 0. Then, Y ≤UO Y .

Finally, assume that V and V are marginally identically distributed. In

that case, Y and Y also are identically distributed. The upper orthant order

is then equivalent to the Positive Quadrant Dependence order (PQD), which

compares the dependence between the margins. We recall that the PQD

order implies the Laplace transform order [3] so that the Laplace transform
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Figure 1. Example 4.1, RTI and not LTD property

order can also be considered as some comparison of the dependence between

the margins. In that setting, the following result means that the more

dependent the failure rates increments are (in the sense of the Laplace

transform order), the larger the bivariate lifetime Y is.

Proposition 3.5. Let V and V be marginally identically distributed. As-

sume V to be smaller than V in the sense of the bivariate Laplace transform

order (V ≤LV ), namely E
(
e−s1V

(1)−s2V (2)
)
≤ E

(
e−s1V

(1)−s2V
(2)
)

for all

s1, s2 ≥ 0. Then Y ≤PQD Y .

4. Numerical experiments

In all the following experiments, we take hi = 0 for i = 1, 2. Also, we take

V (i) = U (i) + U (3), i = 1, 2, where U (1), U (2) and U (3) are independent.

Example 4.1. The parameters are: λ(x) = ex, p11(x) = p01(x) = p10(x) =
e−x

4 . Also, the U (i)’s (i = 1, 2, 3) are exponentially distributed with respec-

tive parameters 1, 5 and 6. Figure 1 (left) shows the right tail FY (x,x2)

FY1
(x)

with

respect to x for various values of x2. Whatever x2 is, we observe that the

right tail is always increasing so that, as expected, the RTI (Y2|Y1) prop-

erty is true. However, the left tail FY (0.19,x)
FY2

(x) has been plotted in Figure

1 (right) and we observe that it is not monotonous. In that example, the

LTD (Y2|Y1) property is consequently false.

Example 4.2. The parameters are: p11(x) = p01(x) = p10(x) = e−x

4

and the U (i)’s (i = 1, 2, 3) are gamma distributed with parameters (ai, 1)

and (a1, a2, a3) = (1, 2, 3). We consider λ(x) = x and λ(x) = 2x, with

λ(x) ≤ λ (x). The quotient r(x) = F̄Y (x)/F̄Y (x) is plotted in Figure 2,
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Figure 2. Example 4.2, r(x) is monotone

Figure 3. Example 4.3, Influence of fatality of shocks

where Y and Y refer to λ(x) and λ(x), respectively. We observe that, as

expected, r(x) is increasing in x. It means Y ≤whr Y .

Example 4.3. This example shows numerically the influence of the fatality

of shocks on lifetime. Let Y and Y be the lifetimes corresponding to p =(
pij = 1

4

)
)i,j=0,1 and p̄ =

(
p̄11 = 1

4 , p̄01 = 1
6 , p̄10 = 1

6 , p̄00 = 5
12

)
. The V (i)’s

are the same as in Example 4.2. The other parameter is λ(x) = 2x. We

have p̄ ≤PQD p and as expected, the difference d = FY − FY is always

positive (see Figure 3). It means the bivariate lifetime Y is larger than Y ,

in the sense of the positive quadrant dependence order.
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Figure 4. Example 4.4, Influence of the dependence between V (1) and V (2)

Example 4.4. This example illustrates the influence of the dependence

between V (1) and V (2) on the bivariate lifetime. All parameters are similar

as those in Example 4.2, except from the fact that, for the parameters of

the gamma distributed U (i), i = 1, 2, 3, we take (a1, a2, a3) = (1, 2, 3) and

(ā1, ā2, ā3) = (3, 4, 1). Then, V (1) and V̄ (1) (resp. V (2) and V̄ (2)) are iden-

tically gamma distributed with parameter (4, 1) (resp. (5, 1)). However, it

is easy to check that V ≤L V . We observe in Figure 4 that, as expected,

the difference D = F̄Y − F̄Ȳ is always positive, so that Y is larger than Y ,

in the sense of the upper orthant order.
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